
THE LOWER ALGEBRAIC K-THEORY OF Γ3

IVONNE J. ORTIZ

Abstract. We explicitly compute the lower algebraic K-theory of Γ3 a dis-
crete subgroup of the group of isometries of hyperbolic 3-space.

1. Introduction

In this paper we prove the following theorem:

Main Theorem. Let Γ3 = O+(3, 1)∩GL(4,Z). Then the lower algebraic K-theory
of the integral group ring of Γ3 is given as follows:

Wh(Γ3) = 0,

K̃0(ZΓ3) ∼= Z/4⊕ Z/4,
K−1(ZΓ3) ∼= Z⊕ Z, and
Kn(ZΓ3) = 0, for n < −1.

For an arbitrary discrete group Γ, it has been conjecture that the algebraic K-
theory of the integral group ring ZΓ may be computed from the corresponding K-
groups of certain subgroups of Γ. More precisely, the Farrell and Jones Isomorphism
Conjecture [FJ93] states that the algebraic K-theory of ZΓ may be computed from
the algebraic K-theory of the virtually cyclic subgroups of Γ (where a group is
called virtually cyclic if it has a cyclic subgroup of finite index) via an appropriate
“assembly map” (see Section 2 for a precise statement and definitions). In [FJ93]
Farrell and Jones proved the Isomorphism Conjecture in lower algebraic K-theory
for cocompact discrete subgroups of a virtually connected Lie group, in particular
for discrete groups acting properly discontinuously and cocompactly by isometries
on a simply connected symmetric Riemannian manifold M with sectional curvature
non-positive everywhere. In [BFPP00] Berkove, Farrell, Pineda and Pearson extend
this result to discrete groups acting properly discontinuously on hyperbolic n-space
via isometries whose orbit space has finite volume (but non necessarily compact).

Let Γn = O+(n, 1) ∩ GL(n+ 1,Z), where O+(n, 1) denotes the group of isome-
tries of the Riemannian manifold Hn. The group Γn is a discrete subgroup of
O+(n, 1), since Γn is a subgroup of the discrete group GL(n+1,Z). The groups Γn

are hyperbolic, non-cocompact, n-simplex, reflection groups for n = 3, . . . , 9, (see
Section 3). The groups Γn form a nice family of infinite groups with torsion for
which the Isomorphism Conjecture in algebraic K-theory holds. In this paper we
compute the lower algebraic K-theory of the integral group ring ZΓ3. We accom-
plish our computations using the fundamental results of Farrell and Jones [FJ93]
and the algebraic techniques of Davis and Lück [DL98].
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2. Review of the Isomorphism Conjecture in K-Theory

In this section we introduce some notation that is used throughout this paper.
The definitions and results provided here are brief, and the interested reader should
refer to [DL98].

Let Γ be a discrete group and F be a family of subgroups of Γ closed under
inclusion and conjugation, i.e. if H ∈ F then g−1H ′g ∈ F for all H ′ ⊂ H and all
g ∈ Γ. Some examples for F are T R, FIN , VC, and ALL, which are the families
consisting of the trivial group, finite subgroups, virtually cyclic groups, and all
subgroups respectively.

The orbit category Or(Γ) is the category whose objects are homogeneous Γ-spaces
Γ/H, considered as left Γ-sets, and whose morphisms are Γ-maps. More generally,
for a family of subgroups F , define the restricted orbit category Or(Γ,F) to be the
category whose objects are homogeneous spaces Γ/H where H ∈ F . If F is the
family ALL, we abbreviate Or(Γ,ALL) by Or(Γ).

A covariant (contravariant) Or(Γ)-space X is a covariant (contravariant) functor

X : Or(Γ) −→ SPACES.
from Or(Γ) to the category of compactly generated spaces. A map between Or(Γ)-
spaces is a natural transformation of such functors. A covariant (contravariant)
Or(Γ, T R)-space is the same as a left (right) Γ-space. Maps of Or(Γ, T R)-spaces
correspond to Γ-maps.

A spectrum E = {(E(n), σ(n)) |n ∈ Z} is a sequence of based spaces {E(n) |n ∈
Z} together with pointed maps σ(n) : (E(n) ∧ S1) → E(n + 1), called structure
maps. A spectrum E is called an Ω-spectrum if for each structure map, its adjoint
En → ΩEn+1 = map(S1, En+1) is a weak homotopy equivalence of spaces. We
denote by Ω-SPECT RA the corresponding full subcategory of SPECT RA. A map
of spectra is a sequence of maps which strictly commute with the structure maps
in an obvious sense.

The homotopy groups of a spectrum E are defined by

πq(E) := lim
n→∞

πq+n(E(n)),

where the system πq+n(E(n)) is given by the composition

πq+n(E(n)) Σ // πq+n+1(E(n) ∧ S1)
(σn)∗ // πq+n+1(E(n+ 1))

of the suspension homomorphism and the homomorphism induced by the structure
maps.

More generally, one can also take the homology of a space with coefficients in a
spectrum by

Hq(Y ; E) := lim
n→∞

πq+n(Y+ ∧ E(n)),

letting Y be a point recovers the coefficient groups. Homology with coefficients in
a specified spectrum is a generalized homology theory; furthermore any generalized
homology theory has a spectrum giving rise to it.

Associated to each covariant Or(Γ)-spectrum K(?) (we use a question mark to
indicate the place where objects are plugged into the functor) is a generalized equi-
variant homology theory satisfying the WHE-axiom and the disjoint union axiom,
for example, there is a long exact Mayer-Vietories sequence, and the WHE-axiom
requires that weak homotopy equivalence of contravariant Or(Γ)-spaces induces an
isomorphism on homology groups.
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This generalized homology theory is constructed as follows: every Γ-space X
gives rise to a contravariant Or(Γ)-space X? = mapΓ(Γ/?, X) (see [DL98, Example
1.3]) and we can form the balanced smash product over the orbit category between
a contravariant Or(Γ)-space and a covariant Or(Γ)-spectrum to obtain an ordinary
spectrum, e.g.

X?
+ ∧Or(Γ) K(?) =

 ∨
Γ/H∈Or(Γ)

XH
+ ∧K(H)

 / v .

Compare [DL98, pg. 237]. This construction is functorial in X and satisfies the
properties listed above. To stress the homological behavior we write the homotopy
groups of the spectrum as

HOr(Γ)
n (X; K) = πn(X?

+ ∧Or(Γ) K(?)).

Note that if C is a category with a single object, all whose morphims are iso-
morphisms (e.g. Or(Γ, T R)), this generalized homology theory reduces to Borel
homology.

Let C be a (small) additive category. In [PedW85] the authors construct a
non-connective spectrum whose homotopy groups are the algebraic K-groups of
C (including the negative groups). We denote this spectrum by K−∞(C). In fact
K−∞ is a functor from additive categories to SPECT RA, i.e. an additive and hence
exact functor induces a map of spectra.

Let us now recall the construction of the algebraic K-theory Or(Γ,F)-spectrum
defined by Davis and Lück in [DL98]. We will denote it by KR−∞ with R an
arbitrary associative ring with unit. Given any Γ-set S define the transport category
S̄ the category whose objects are the elements of S and mor(s, t) = {g ∈ Γ | gs = t}.
The transport category is a groupoid, i.e. every morphism is an isomorphism. Given
any small category C, we can form the the associated R-linear category RC with the
same objects and new morphism set morRC(c, d) = RmorC(c, d) (the free R-module
generated by the old morphism set). Finally we turn RC into an additive category,
i.e. we artificially introduce finite sums (or products). The resulting category is
denoted by RC⊕. The Davis-Lück functor is now given as

KR−∞ : Or(Γ,F) −→ SPECT RA

Γ/H 7−→ K−∞(RΓ/H⊕).

Note that KR−∞ and K−∞(R) are different objects.
For any quotient, the category Γ/H is equivalent to the category Or(Γ, T R),

as a consequence the Or(Γ)-spectrum defined above has the key property that
πn(KR−∞(Γ/H)) = Kn(RH).

For a family F of subgroups of Γ we denote by E(Γ,F) the universal space
among Γ-spaces with isotropy in F . It is characterized by the universal property
that for every Γ-CW complex X whose isotropy groups are all in F one can find
an equivariant continuous map X → E(Γ,F) which is unique up to equivariant
homotopy. A Γ-CW-complex E is a model E(Γ,F) if the H-fixed point sets EH

are contractible for all H ∈ F and empty otherwise. The two extreme cases are
F = ALL, where E(Γ,F) can be taken to be a point, and F = T R, where E(Γ,F)
is a model for EΓ.
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The projection map pr : E(Γ,F) −→ E(Γ,ALL) = {pt} induces a map

HOr(Γ)
n (E(Γ,F); KR−∞) −→ HOr(Γ)

n ({pt}; KR−∞) = Kn(RΓ),

which is called the assembly map.
The Isomorphism Conjecture in algebraic K-theory for a discrete group Γ and a

family F of subgroups is that the assembly map

HOr(Γ)
n (E(Γ,F); KR−∞) −→ HOr(Γ)

n ({pt}; KR−∞) = Kn(RΓ),

is an isomorphism for all n ∈ Z.
It is clear that for an arbitrary Γ the Isomorphism Conjecture need not be

valid. However, the Isomorphism Conjecture is always true (and therefore point-
less!) when F is the family of all subgroups. The philosophy is that the smaller the
family, the easier it is to compute HOr(Γ)

n (E(Γ,F); KR−∞). The larger the family,
the closer the end result is to K-theory.

The Farrell and Jones Isomorphism Conjecture in algebraic K-theory, reformu-
lated in terms of the Davis and Lück functor, states that the assembly map

HOr(Γ)
n (E(Γ,VC); KR−∞) −→ HOr(Γ)

n ({pt}; KR−∞) = Kn(RΓ).

is an isomorphism for all n ∈ Z.
The main point of the validity of this conjecture is that it allows the computations

of the groups of interest Kn(RΓ) from the values of KR−∞(Γ/H) on the groups
H ∈ VC, and the structure of the restricted orbit category Or(Γ,VC).

The pseudo-isotopic version of the Farrell and Jones Conjecture is obtained by
replacing the algebraic K-theory spectrum by the functors P∗, Pdiff

∗ , which map
from the category of topological spaces X to the category of Ω− SPECT RA. The
functor P∗(?) (or Pdiff

∗ (?)) maps the spaceX to the Ω-spectrum of stable topological
(or smooth) pseudo-isotopies of X (see [FJ93, Section 1.1]).

The relation between P∗(?) and lower algebraic K-theory is given by the work
of Anderson and Hsiang [AH77, Theorem 3]. They show

πj(P∗(X)) =


Wh(Zπ1(X)), j = −1
K̃0(Zπ1(X)), j = −2
Kj+2(Zπ1(X)), j ≤ −3.

We make use of this relation in the Main Theorem.
The main result in [FJ93] is that the Isomorphism Conjecture is true for the

pseudo-isotopy and smooth pseudo-isotopy functors when π1(X) = Γ is a subgroup
of a discrete cocompact subgroup of a virtually connected Lie group, this result to-
gether with the identification given by Anderson and Hsiang of the lower homotopy
groups of the pseudo-isotopy spectrum and the lower algebraic K-theory implies
the following Theorem (see [FJ93, Section 1.6.5, and Theorem 2.1]):

Theorem 2.1 (Farrell, F.T. and Jones, L.E). Let Γ be a cocompact discrete sub-
group of a virtually connected Lie group. Then the assembly map

HOr(Γ)
n (E(Γ,VC); KZ−∞) −→ Kn(ZΓ)

is an isomorphism for n ≤ 1 and a surjection for n = 2.

Farrell and Jones also proved Theorem 2.1 for discrete cocompact groups, acting
properly discontinuously by isometries on a simply connected Riemannian manifold
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M with everywhere non-positive curvature ([FJ93, Proposition 2.3]). Berkove, Far-
rell, Pineda, and Pearson extended this result to discrete groups, acting properly
discontinuously on hyperbolic n-spaces via isometries, whose orbit space has finite
volume (but not necessarily compact), (see [BFPP00, Theorem A]). In particular
this result is valid for Γ a hyperbolic, non-cocompact, n-simplex reflection group.

Sometimes we can use smaller families than VC such as the family FIN of finite
subgroups as explained in the next result which appeared in [LS00, Theorem 2.3]
and for n = ∞ in [FJ93, Theorem A.10].

Theorem 2.2. Let F ⊂ F ′ be two families of subgroups of Γ. For each Q ∈ F ′−F ,
define the induced family of subgroups FQ of Q as FQ = {G ∩Q|G ∈ F}. Suppose
that for all Q ∈ F ′ −F the assembly map

HOr(Q,FQ))
q (E(Q,FQ); KZ−∞) −→ Kq(ZQ)

is an isomorphism for all q ≤ n. Then the relative assembly map

HOr(Γ,F)
q (E(Γ,F); KZ−∞) −→ HOr(Γ,F ′)

q (E(Γ,F ′); KZ−∞)

is an isomorphism for all q ≤ n.

Our intention is to use Theorem 2.1 to compute the lower algebraic K-theory of
the integral group ring ZΓ3. We would like to reduce this problem even further by
applying Theorem 2.2 to the case F = FIN , F ′ = VC and n < 2. Here our first
task is to determined up to isomorphism all finite subgroups and all infinite virtually
cyclic subgroups of Γ3. Once this is established, we must check the assembly map
condition given in Theorem 2.2 for each infinite virtually cyclic subgroup. If we can
accomplish this, then we have shown that the relative assembly map

HOr(Γ3)
n (E(Γ3,FIN ); KZ−∞) −→ HOr(Γ3)

n (E(Γ3,VC); KZ−∞)

is an isomorphism for n < 2. By combining this assembly map with the assembly
map in Theorem 2.1, we have shown that the assembly map

HOr(Γ3)
n (E(Γ3,FIN ); KZ−∞) −→ Kn(ZΓ3)

is an isomorphism for all n < 2.
Thus to compute the lower algebraic K-theory of the integral group ring ZΓ3 it

suffices to compute, for n < 2, the homotopy groups

HOr(Γ3)
n (E(Γ3,FIN ); KZ−∞).

These computations are feasible using Atiyah-Hirzebruch type spectral sequences
described by Davis and Lück in [DL98, Theorem 4.7] (See proof of Theorem 4.1.),
and Quinn in [Qu82, Theorem 8.7] (See proof of Main Theorem.).

Theorem 2.3 ([DL98], [Qu82]). There exists an Atiyah-Hirzebruch type spectral
sequence

E2
p,q = Hp(E(G,F)/G ; {Kq(ZGσ)}) =⇒ H

Or(Γ)
p+q (E(Γ,F); KZ−∞).

3. The groups Γn

Let Rn,1 denote the Minkowski space, that is, an (n+1)-dimensional real vector
space with coordinates x = (x1, x2, . . . , xn+1), equipped with the bilinear form
defined by

〈x, y〉 = x1y1 + x2y2 + · · · − xn+1yn+1.
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Hyperbolic n-space Hn can be defined as one sheet of the hyperboloid 〈x, x〉 = −1,
defined by xn+1 > 0. Let O(n, 1) denote the isometry group of the bilinear form and
let O+(n, 1) be the subgroup of index 2 that preserves the sheets of the hyperboloid.
Then O+(n, 1) is the isometry group of the Riemannian manifold Hn.

In the conformal ball model of hyperbolic n-space, we can identify boundary at
infinity of hyperbolic n-space ∂∞(Hn), with the boundary of the ball, i.e, the sphere
at infinity Sn−1

∞ .
A hyperbolic Coxeter n-simplex ∆n is an n-dimensional simplex in Hn, all of

whose dihedral angles are submultiples of π or zero. We allow a simplex in Hn to
be unbounded with ideal vertices on the sphere at infinity of Hn. Let S be a side
of a Coxeter n-simplex ∆n in Hn. The reflection of Hn in the side S of ∆n is the
reflection of Hn in the hyperplane 〈S〉 spanned by S.

Definition 3.1. A hyperbolic Coxeter n-simplex reflection group is the group
generated by reflections in the sides of a Coxeter n-simplex in Hn.

A hyperbolic Coxeter n-simplex reflection group is a discrete subgroup of isome-
tries of Hn, with fundamental domain its defining Coxeter n-simplex ∆n (see [Cx73,
pg.188]). Hyperbolic Coxeter n-simplex groups arise naturally in geometry as
groups of symmetries of regular tessellations of Hn. The hyperbolic Coxeter sim-
plices were classified by H. S. M Coxeter and G. J. Whidrow [CxW50], F. Lannér
[L50], J.-L. Koszul [Ko68] and M. Chein [Ch69]. For each dimension n ≥ 3, there
are only finitely many hyperbolic Coxeter simplices, and such simplices exist only
in dimensions n = 2, 3, . . . , 9.

A Coxeter group W is an abstract group defined by a group presentation of the
form 〈Si | (SiSj)mij 〉, where

(1) the indices i, j vary over some countable index set I;
(2) mij is either a positive integer or ∞ for each i, j;
(3) mij = mji;
(4) mii = 1 for each i;
(5) mij > 1 if i 6= j; and
(6) if mij = ∞, then the relator (SiSj)mij is deleted.

Note that if i 6= j, then we can obtain the relator (SjSi)mji from the relators S2
i ,

S2
j , and (SiSj)mij ; and therefore only one of the relators (SiSj)mij and (SjSi)mji

is required and the other one may be deleted.
Let W = 〈Si | (SiSj)mij 〉 be a Coxeter group. The Coxeter graph of W is the

labeled graph with vertices I and edges

{(i, j) : mij > 2}.
Each edge (i, j) is labeled by mij . For simplicity, the edges with mij = 3 are usually
not labeled in a representation of a Coxeter graph.

Let W = 〈Si | (SiSj)mij〉 be a Coxeter group. For a subset T ⊂ {Si}i∈I of the
generating set, WT is defined as the subgroup of W generated by T , and is called
a parabolic subgroup. It is known that WT is also a Coxeter group (see [V72]). If T
is the empty set, then WT is defined to be the trivial group. It is well known that
any finite subgroup of a Coxeter group W is conjugate to a subgroup of a parabolic
group WT for some T subset of the generating set (see [Da87]).

Let Γ be the group generated by the reflections in the sides on a Coxeter n-
simplex ∆n. Let {Si} be the set of sides of ∆n, and for each pair of indices i,
j, let mij = π/θ(Si, Sj), where θ(Si, Sj) is the dihedral angle between Si and Sj .
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Then the Coxeter group W = 〈 Si | (SiSj)mij 〉 is isomorphic to Γ, ([R94, Theorem
7.1.4]), i.e. Γ is a Coxeter group.

Let Γn be the subgroup of O+(n, 1) that preserves the standard integer lattice
Zn+1 ⊂ Rn,1, that is, Γn = O+(n, 1) ∩GL(n+ 1,Z).

Since Γn is a subgroup of the discrete group GL(n + 1,Z), it is also a discrete
group of O+(n, 1). For n = 3, . . . , 9, the group Γn is a hyperbolic Coxeter, nonco-
compact, n-simplex reflection group with fundamental domain its defining Coxeter
n-simplex ∆n (see [R94, pg. 301]). The Coxeter graphs of these groups are listed
in Figure 1.

Figure 1. The Coxeter graphs of the groups Γn for n = 3, . . . , 9

The groups Γn form a nice family of discrete subgroups of isometries of hyperbolic
n-space for which the Farrell and Jones Isomorphism Conjecture in lower algebraic
K-theory holds. In this paper we use this result to explicitly compute the lower
algebraic K-theory of the integral group ring ZΓ3.

In order to use Theorem 2.1 to compute the lower algebraic K-theory of ZΓ3, we
must first classify up to isomorphism the family VC of all virtually cyclic subgroups
of Γ3, where Γ3 is a hyperbolic, Coxeter tetrahedra reflection group with group
presentation

Γ3 = 〈S1, S2, S3, S4 | S2
i = (S1S3)2 = (S2S4)2 = (S1S4)2 = (S1S2)3

= (S2S3)4 = (S3S4)4 = 1〉,

and Coxeter graph

Figure 2. The Coxeter graph of Γ3 = [3, 4, 4]

Recall that a group G is virtually cyclic if G is either finite or contains Z as a
subgroup of finite index. We start with the classification of the finite subgroups of
Γ3. By looking at subsets of the generating set {S1, S2, S3, S4}, the following are
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all parabolic subgroups of Γ3:

〈Si |S2
i = 1 〉 ∼= Z/2

〈S1, S2 |S2
1 = S2

2 = (S1S2)3 = 1 〉 ∼= D3,

〈S1, S3 |S2
1 = S2

3 = (S1S3)2 = 1 〉 ∼= Z/2× Z/2,
〈S1, S4 |S2

1 = S2
4 = (S1S4)2 = 1 〉 ∼= Z/2× Z/2,

〈S2, S3 |S2
2 = S2

3 = (S2S3)4 = 1 〉 ∼= D4,

〈S2, S4 |S2
2 = S2

4 = (S2S4)2 = 1 〉 ∼= Z/2× Z/2,
〈S3, S4 |S2

3 = S2
4 = (S3S4)4 = 1 〉 ∼= D4,

〈S1, S2, S3 |S2
1 = S2

2 = S2
3 = (S1S2)3 = (S1S3)2 = (S2S3)4 = 1 〉

∼= [3, 4] ∼= Z/2× S4,

〈S1, S2, S4 |S2
1 = S2

2 = S2
4 = (S1S2)3 = (S1S4)2 = (S2S4)2 = 1 〉

∼= Z/2×D3
∼= D6,

〈S1, S3, S4 |S2
1 = S2

3 = S2
4 = (S1S3)2 = (S1S4)2 = (S3S4)4 = 1 〉

∼= Z/2×D4,

〈S2, S3, S4 |S2
2 = S2

3 = S2
4 = (S2S3)4 = (S3S4)4 = (S2S4)2 = 1 〉

∼= [4, 4] ∼= P4m.

Here Z/n denotes the cyclic group of order n, Dn the dihedral group of order 2n,
Sn the symmetric group of order n!, and P4m is a two-dimensional crystallographic
group (see [Pe98]).

Any finite subgroup of Γ3 is conjugate to a subgroup of a parabolic group (see
[Da87, Lemma 1.3]), thus the finite subgroups of Γ3 up to isomorphism are: Z/2,
Z/3, Z/4, D2, Z/6, D3

∼= S3, Z/2×Z/4, (Z/2)3, D4, D6, A4, Z/2×D4, S4, Z/2×A4,
Z/2× S4.

To classify the infinite virtually cyclic subgroups of Γ3, we use the following well
known result (see [FJ95, Lemma 2.5]).

Lemma 3.2. Any infinite virtually cyclic group is either of type F oα Z, where F
is a finite group, or it maps onto D∞ with finite kernel .

Here F oα Z denotes the semi-direct product of F and Z where Z acts on F by
an automorphism α of F , and D∞ denotes the infinite dihedral group.

First, to identify the groups of type F oα Z which occurs in Γ3 we observe that
since F is a finite group then FoαZ contains 1×|F |! Z. Since 1×|F |! Z is contained
in the centralizer of F in Γ3, then F oα Z can occur in Γ3 only if CΓ3(F ) contains
an element of infinite order.

There is some literature concerning centralizers of subgroups of Coxeter groups.
In [Br96], Brink describes C(WT ) in case that T consists of a single generator.
Using [Br96, Theorem in Section 2], we can show that the centralizers CΓ3(Si) for
i = 1, . . . , 4 are the Coxeter groups given in Figure 3.

In [BM], Mihalik and Bahls give a complete description of the centralizer of an
arbitrary parabolic subgroup of an even Coxeter group in terms of the generators.
We thank M. Mihalik who kindly informed us of these results and made them
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Figure 3. The Coxeter graphs of the centralizers CΓ3(Si) for i = 1, . . . , 4

accessible to us. He points out that the techniques used to prove [BM, Theorem
1.1] also apply to the groups Γn. Using this information, the following are the
centralizers of the remaining parabolic subgroups of Γ3:

CΓ3(〈S1, S2〉) = 〈S4 〉 ∼= Z/2,
CΓ3(〈S1, S3〉) = 〈S1, S3, S4S3S4 〉 ∼= (Z/2)3,

CΓ3(〈S1, S4〉) = 〈S1, S4, S3S4S3 〉 ∼= (Z/2)3,

CΓ3(〈S2, S3〉) ∼= 〈 1 〉,
CΓ3(〈S2, S4〉) = 〈S2, S4 〉 ∼= (Z/2)2,

CΓ3(〈S3, S4〉) = 〈S1, (S4S3)2 〉 ∼= (Z/2)2,

CΓ3(〈S1, S2, S3〉) ∼= 〈 1 〉,
CΓ3(〈S1, S2, S4〉) = 〈S4 〉 ∼= Z/2,
CΓ3(〈S1, S3, S4〉) = 〈S1, (S4S3)2 〉 ∼= (Z/2)2.

With this information we can exclude all parabolic subgroups except for those
isomorphic to Z/2.

Proposition 3.3. Let G be a subgroup of Γ3 isomorphic to Z/2×Z/2 ∼= D2, then
CΓ3(G) is finite.

Proof. Let ∆3 be the fundamental domain of Γ3, and let V be the set of vertices
of ∆3 ∩H3. Note that the fixed point set of G in H3 is either

XG = (H3)G =


∗ a point in H3

L a line in H3

P a plane in H3.

and CΓ3(G) leaves invariant XG. If XG = ∗, then CΓ3(G) is finite (CΓ3(G) acts
properly discontinuously on H3 since Γ3 does, and fixes a point). Hence we need
only to consider the case where a line L ⊂ XG. Since

⋃
γ∈Γ3

(Γ3V ) is countable,
then γ · x ∈ ∆3 − V for some point x ∈ L and γ ∈ Γ3. Therefore G is conjugate to
a subgroup of a parabolic subgroup of Γ3 which is different from

〈S1, S2, S3〉, 〈S1, S2, S4〉, 〈S1, S3, S4〉, 〈S2, S3, S4〉.
In fact it must be either

P1 = 〈S1, S3〉, P2 = 〈S1, S4〉,
P3 = 〈S2, S3〉, P4 = 〈S2, S4〉 or P5 = 〈S3, S4〉.

If G = γPiγ
−1 with i = 1, 2 or 4, then CΓ3(G) is finite by the previous calculations.

Therefore we only need to consider the two cases: P3 = 〈S2, S3〉 and P5 = 〈S3, S4〉.
In both of this two cases G fixes a line L such that ∆3 ∩ L is a half line. Hence
CΓ3(G) can not contain an element of infinite order because if it does, i.e. if there
exist a γ ∈ CΓ3(G) of infinite order, then γ leaves L invariant since CΓ3(G) does
and acts on L by isometries of L; but since Isom(L) = RoZ/2, then γ acts on L by
a non-trivial translation (recall that that Γ3 acts properly discontinuously on H3),
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therefore γ maps some point of ∆3 ∩L into a different point, but this is impossible
since ∆3 is the fundamental domain for Γ3 acting on H3. �

The other subgroups except for Z/3, Z/4 and Z/6 can not occur either, since D2

occurs as a subgroup of each of them and CΓ3(D2) is finite.
Next, we study the centralizers of the remaining finite groups: Z/3, Z/4, and

Z/6.
As was mentioned at the beginning of this section, hyperbolic n-simplex groups

arise as groups of symmetries of regular tessellations of hyperbolic n-space. The
symmetric group Γ3 = [3, 4, 4] of a honeycomb {3, 4, 4} is generated by reflections
Si in four planes Pi (say) which form a 3-simplex with dihedral angles

θ(P1, P2) = π/3, θ(P2, P3) = π/4, θ(P3, P4) = π/4,

and the remaining three angles π/2. Since the group of isometries of H3 is isomor-
phic to the group of Möbius transformations of Ĉ = C∪ {∞}, and any isometry of
hyperbolic 3-space is generated by reflections, then [3, 4, 4] can be represented by a
group of Möbius transformations generated by the inversions in four circles cutting
one another at the same angles as the corresponding reflection planes. Therefore
Γ3 can be represented by the antilinear fractional transformations:

Γ3 = [3, 4, 4] = 〈 S1(z) = 1/z̄, S2(z) = 1− z̄, S3(z) = iz̄, S4(z) = z̄ 〉.

Recall that an antilinear fractional transformation is a continuous map φ : Ĉ −→ Ĉ
of the form

φ(z) =
az̄ + b

cz̄ + d
,

where a, b, c, d are in C and ad− bc 6= 0.
The generators of Γ3 can be represented by antilinear fractional transformations

determined by the following matrices

R1 =
(

0 1
1 0

)
, R2 =

(
−1 1
0 1

)
, R3 =

(
i 0
0 1

)
, R4 =

(
1 0
0 1

)
.

Using this representation an elementary calculation shows that the centralizer
of F in Γ3 for F = Z/3, Z/4, and Z/6, contains an element of infinite order only if
F = Z/3.

Therefore we have shown that the centralizer of F in Γ3 contains an element of
infinite order only if F = Z/2 or Z/3.

Hence the possible infinite virtually cyclic subgroups of Γ3 of type F oα Z are:

Z, Z/2× Z, Z/3× Z, Z/3 o Z.

Next, we classify the groups that map onto D∞ with finite kernel.
Let Q map onto D∞, with nontrivial kernel, i.e., we are given the following exact

sequence
1 → F → Q→ D∞ → 1.

Now, this exact sequence gives rise to another exact sequence

1 → F → Q′ → Z → 1,

where Z is the infinite cyclic subgroup of index two in D∞ and Q′ is just the inverse
of Z under the map Q→ D∞. The sequence 1 → F → Q′ → Z → 1 splits since Z
is free. Hence F is isomorphic to either Z/2 or Z/3 and Q′ is isomorphic to either
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Z/2×Z, Z/3×Z, or Z/3 o Z by the classification of the groups of type F oα Z.
Since Q′ is a subgroup of index two in Q, we have the exact sequence

1 → Q′ → Q→ Z/2 → 1.

Thus we have reduced the classification of the groups that map onto D∞ to finding
solutions to the extension problems given above.

Using group cohomology (see [Bro82, Theorem IV.3.12, Theorem IV.6.6]) a fairly
straight-forward calculation shows that Q must be one of the following groups
(similar calculations also appear for example in [BFPP00], [LS00], [U96]):

D∞, Z/2×D∞, Z/4 ∗Z/2 Z/4, Z/4 ∗Z/2 (Z/2)2,

Z/3×D∞ ∼= Z/6 ∗Z/3 Z/6, S3 ∗Z/3 S3.

Hence we have a proof of the following lemma:

Lemma 3.4. Let Q be infinite virtually cyclic subgroup of Γ3, then Q is one of the
following groups:

Z, Z/2× Z, Z/3× Z, Z/3 o Z, D∞, Z/2×D∞, Z/4 ∗Z/2 Z/4,

Z/4 ∗Z/2 (Z/2)2, Z/3×D∞ ∼= Z/6 ∗Z/3 Z/6, S3 ∗Z/3 S3.

4. The Reduction to Finite Subgroups

In Theorem 4.7, we show that for Γ = Γ3, F = FIN and F ′ = VC the relative
assembly map given in Theorem 2.2 is an isomorphism for n < 2. Thus it suffices
to compute HOr(Γ3)

n (E(Γ3,F); KR−∞) when F = FIN to get the main result.

Theorem 4.1. The assembly map

AFQ
: HOr(Q,FQ)

n (E(Q,FQ); KZ−∞) −→ Kn(ZQ)

is an isomorphism for any n ∈ Z if Q = Z or D∞, and an isomorphism for n < 2 if
Q = Z/2×Z, Z/3×Z, Z/3oZ, Z/2×D∞, Z/4∗Z/2Z/4, Z/4∗Z/2 (Z/2)2, Z/6∗Z/3

Z/6, or S3 ∗Z/3 S3.

Note that the family FQ consist of the finite subgroups of Q.

Remark 4.2. The claim for Z and D∞ has been proved in [LS00, Lemma 2.4], for
any n.

To prove Theorem 4.1 for the remaining subgroups we need a sequence of Lem-
mas. In Lemma 4.3, we compute the K-theory of each possible Q, the range of
AFQ

, and we observe in Proposition 4.5 that the assembly map

A : HOr(Q,T R)
n (E(Q, T R); KZ−∞) −→ Kn(ZQ)

is an isomorphism for n < 2 in each case except for Q = Z/6 ∗Z/3 Z/6 for which
A fails to be an isomorphism at n = −1, (see Remark 4.6). Then to complete the
proof of the theorem, we compute HOr(Q)

n (E(Q,FQ); KZ−∞), the domain of AFQ
,

and note that the domain and the range of AFQ
are finitely generated abelian

groups, and are isomorphic as abstracts groups for n < 2. We use the fact that
the assembly map A factors through AFQ

; this guarantees that AFQ
is surjective.

For Q = Z/6 ∗Z/3 Z/6, [FJ95, Theorem 2.6] guarantees the surjectivity of AFQ
at

n = −1. For finitely generated abelian groups, any surjective endomorphism is
automatically an isomorphism completing the proof.
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Lemma 4.3. Let Q be an infinite virtually cyclic subgroup of Γ3. If Q 6= Z/6 ∗Z/3

Z/6, then Wh(Q) = 0, K0(ZQ) = Z, and Kn(ZQ) = 0 for all n < 0. If Q =
Z/6∗Z/3 Z/6, then Wh(Q) = 0, K0(ZQ) = Z, K−1(ZQ) = Z⊕Z, and Kn(ZQ) = 0
for all n ≤ −2.

In order to carry out our computations, we need information on the K-theory of
the finite subgroups of each infinite virtually cyclic group. These finite subgroups
are: Z/2, Z/3, Z/4, Z/2× Z/2 ∼= D2, Z/6, S3

∼= D3,
It is a result of Carter [C80a] that Kn(ZG) = 0 if n < −1 for any finite group

G. In [Bas68, Theorem 10.6], Bass determines K−1(ZG) for finite abelian groups.
For G = Z/2, Z/3, Z/4 and (Z/2)2, K−1(ZG) = 0. For G = Z/6, K−1(Z[Z/6]) =
Z. To compute K−1(Z[D3]) we need the following formula due to Carter [C80b,
Theorem 3], the reader is referred to Section 5.

0 → K0(Z) → (
⊕
p|n

K0(ẐpD3))⊕K0(QD3) →
⊕
p|n

K0(Q̂pD3) → K−1(ZD3) → 0.

The group algebra QD3 is isomorphic to Q×Q×M2(Q), and the same statement is
true if Q is replaced by Q̂2 or Q̂3. HenceK0(Q̂2[D3]) ∼= K0(Q̂3[D3]) ∼= K0(Q[D3]) ∼=
Z3. Using techniques described in [CuR81, Section 5], we have that K0(Ẑ3[D3]) ∼=
K0(F3[D3]) ∼= K0(F3[Z/2]) = K0(F3×F3) = Z2. Also K0(Ẑ2[D3]) ∼= K0(F2[D3]) =
K0(F2[Z/2]×M2(F2)) = K0(F2 ×M2(F2)) = Z2. Another result of Carter [C80a,
Theorem 1] states that K−1(ZG) is torsion-free for any symmetric group Sn. In
particular K−1(ZD3) is torsion-free, so by counting ranks in the exact sequence
above we have that K−1(ZD3) = 0, (see also [Pe98, pg. 273]).

It is well known that K̃0(ZG) = 0 when G is any of the above finite groups
(see [Re76], [Ro94]), and that Wh(G) = 0 for G cyclic of order 2, 3, 4 and 6
(see [O89]). For Wh(Dn) we use the following formula given in [Bas65]: Wh(G) =
Zy⊕SK1(ZG), where y is the number of irreducible real representations of G minus
the number of irreducible rational representations of G. When G = D2 or D3, y is
zero, and Oliver [O89] proves SK1(ZG) vanishes for all finite dihedral groups. For
each of the finite groups in question, K1(ZG) = Gab ⊕ Z/2 (see, [O89]).

We are now ready to prove Lemma 4.3.

Proof of Lemma 4.3. If Q = Z/p×Z with p = 2, or 3, we write Z[Z/p][Z], and apply
the Fundamental Theorem of algebraic K-theory (see [Bas68, Theorem 10.6]):

Kn(Z[Z/p× Z]) ∼= Kn(Z[Z/p])⊕Kn−1(Z[Z/p])⊕ 2NKn(Z[Z/p]), n < 2.

In [LS00, Theorem 3.1 (e)] Lück and Stamm show that the nil terms NKn(Z[Z/p])
are zero for n < 2. Thus for p = 2 or 3

Kn(Z[Z/p× Z]) ∼= Kn(Z[Z/p])⊕Kn−1(Z[Z/p]) = 0, n ≤ −1,

K0(Z[Z/p× Z]) ∼= K0(Z[Z/p])⊕K−1(Z[Z/p]) ∼= Z,
K1(Z[Z/p× Z]) ∼= K1(Z[Z/p])⊕K0(Z[Z/p]) ∼= Z/p⊕ Z/2⊕ Z.

Hence it follows that both Wh(Q) and K̃0(Q) vanish for Q = Z/2×Z or Z/3×Z,
(see also [BFPP00, Proposition 15]).

The lower algebraic K-theory of Q = Z/3 o Z has already been computed in
[BFPP00, Proposition 15]. They show: K1(Z[Z/3 o Z]) = Z ⊕ Z/2, Wh(Z[Z/3 o
Z]) = 0, K̃0(Z[Z/3 o Z]) = 0, and Kn(Z[Z/3 o Z]) = 0 for n ≤ −1.
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The other cases are groups of the shape Q = Q0 ∗Z/pQ1, with Q 6= Z/6∗Z/3 Z/6,
and finite groups Qi such that Whq(Qi) = 0 for q ≤ 1 (to clarify this notation we
refer the reader to Section 5) . In [FJ95] Farrell and Jones show that if G is infinite
virtually cyclic, then Kn(ZG) is zero for n < −1 and that K−1(ZG) is generated
by the images of K−1(ZF ) where F ranges over all finite subgroups F ⊂ G. Then
it follows that Kn(ZQ) = 0 for all n < 0.

Prassidis and Munkholm in [MuPr01, Corollary 3.6] show that there are exact
sequences

K1(Z[Z/p]) → K1(ZQ0)⊕K1(ZQ1) → K1(ZQ) → K0(Z[Z/p]) → · · · ,
and

Wh(Z/p) →Wh(Q0)⊕Wh(Q1) →Wh(Q) → K̃0(Z[Z/p]) → · · ·
After working through the exact sequences, we see that for all four groups Q,
K0(ZQ) = Z, K1(ZQ) = Qab⊕Z/2, and Wh(Q) = 0. The result for Q = Z/2×D∞,
and Q = S3 ∗Z/3 S3 also appears in [BFPP00, Proposition 15].

The claim for Q = Z/6 ∗Z/3 Z/6 follows from the arguments used in the last
two paragraphs: K−1(ZQ) = Z ⊕ Z and Kn(ZQ) = 0 for n ≤ −2 by [FJ95].
K0(ZQ) = Z and Wh(Q) = 0 by [MuPr01].

�

We will make repeated use of the following well known lemma for an arbitrary
group G, (see [Pe98, Lemma1.1]):

Lemma 4.4. For n < 0, the assembly map Hn(BG; K−∞(Z)) −→ Kn(ZG) is an
isomorphism if and only if Kn(ZG) = 0. It is an isomorphism for n = 0 if and
only if K̃0(ZG) = 0, and it is an isomorphism for n = 1 if and only if Wh(G) = 0.

Proposition 4.5. Let Q be an infinite virtually cyclic subgroup of Γ3. If Q 6=
Z/6 ∗Z/3 Z/6, then the assembly map

A : HOr(Q,T R)
n (E(Q, T R); KZ−∞) = Hn(BQ; K∞(Z)) −→ Kn(ZQ)

is an isomorphism for n < 2. If Q = Z/6 ∗Z/3 Z/6, then A is an isomorphism for
n = 0, 1, and n ≤ −2.

Proof. This follows immediately from Lemma 4.3 and Lemma 4.4. �

Remark 4.6. If Q = Z/6 ∗Z/3 Z/6, then the assembly map A can not be an
isomorphism for n = −1, since K−1(ZQ) = Z⊕ Z.

Now we are ready to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. In Lemma 4.3, we compute the target of the map for each
possible Q. We now compute the domain using the Atiyah-Hirzerbruch type spec-
tral sequence given in Theorem 2.3 (see [DL98, Theorem4.7]).

E2
p,q = Hp(E(Q,F)/Q ; {Kq(ZQσ)}) =⇒ H

Or(Q,F)
p+q (E(Q,F); KZ−∞)

with F = FQ. Note that the family FQ consists of the finite subgroups of Q.
The infinite cyclic group acts on the real line (with an appropriate simplicial de-

composition) in an obvious way with finite isotropy, and this action can be extended
to the groups with Z/2 and Z/3 summands by letting Z/2 and Z/3 act trivially.
Hence for the groups of type F o Z, E(Q,FQ) = R, and E(Q,FQ)/Q = S1 with
Z/2, and Z/3 stabilizers at each simplex respectively.
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For the groups of the shape Q = Q0 ∗Z/p Q1 with p = 2 or 3, E(Q,FQ)/Q is an
interval, with Z/p stabilizer at the 1-simplex, and Qi stabilizers at each vertex (see
[S80, Theorem 7]).

The rings ZQσ for each of the stabilizers all have trivial negative K-groups,
(except for Qσ = Z/6 for which K−1(Z[Z/6]) = Z), K0(ZQσ) ∼= Z and K1(ZQσ) ∼=
Qab

σ ⊕ Z/2.
With the above information, the E2 term of the homotopy colimit spectral se-

quence can be easily computed for n less than two. Since E(Q,FQ)/Q is one
dimensional, the spectral sequence collapses at E2, and in each case

HOr(Q,FQ)
n (E(Q,FQ); KZ−∞) ∼= Kn(ZQ) for n < 2.

It remains to show that AFQ
gives the isomorphism.

Recall that the assembly map A factors through the assembly map:

Hn(BQ; K−∞(Z)) −→ HOr(Q,FQ)
n (E(Q,FQ); KZ−∞) −→ Kn(ZQ).

To finish the argument, we consider the following two cases:
(1) If Q 6= Z/6 ∗Z/3 Z/6, then Proposition 4.5 implies that the assembly map

is an isomorphism for n < 2, thus the composite is an isomorphism. This
guarantees the assembly map AFQ

is surjective in this case.
(2) If Q = Z/6 ∗Z/3 Z/6, then Proposition 4.5 implies that the assembly map

AFQ
is surjective for all n < 2, with n 6= −1 (see Remark 4.6). [FJ95,

Theorem 2.6] guarantees that AFQ
is surjective at n = −1.

SinceK0(ZQ), K1(ZQ), andK−1(Z[Z/6∗Z/3Z/6]) (for the other infinite virtually
cyclic groups K−1(ZQ) = 0) are finitely generated abelian groups, any surjective
endomorphism is an automorphism completing the proof of Theorem 4.1. �

Theorem 4.7. The relative assembly map

HOr(Γ3)
n (E(Γ3,FIN ); KZ−∞) −→ HOr(Γ3)

n (E(Γ3,VC); KZ−∞)

is an isomorphism for n < 2.

Proof. It follows from Theorem 4.1 and Theorem 2.2. �

Corollary 4.8. The assembly map

HOr(Γ3)
n (E(Γ3,FIN ); KZ−∞) −→ Kn(ZΓ3)

is an isomorphism for all n < 2.

Proof. It follows from Theorem 4.7 and Theorem 2.1. �

5. proof of Main Theorem

Main Theorem. Let Γ3 = O+(3, 1)∩GL(4,Z). Then the lower algebraic K-theory
of the integral group ring of Γ3 is given as follows:

Wh(Γ3) = 0,

K̃0(ZΓ3) ∼= Z/4⊕ Z/4,
K−1(ZΓ3) ∼= Z⊕ Z, and
Kn(ZΓ3) = 0, for n < −1.
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Proof. We use Quinn’s spectral sequence for the pseudo-isotopy spectrum P∗ (see
Section 2, [FJ93, Lemma 1.4.2], and [Qu82, Theorem 8.7]),

E2
p,q = Hp(E(G,F)/G ; {Whq(ZGσ)}) =⇒Whp+q(ZG).

All the information needed to compute the E2-term is encoded in E(Γ3,FIN )/Γ3

and in the algebraic K-groups of the finite subgroups of Γ3.
Since Γ3 is a hyperbolic, Coxeter tetrahedra reflection group, the fundamental

domain ∆3 of Γ3 satisfies the requirements to be a model for E(Γ3,FIN)/Γ3. ∆3

has 4 faces with stabilizer Z/2, 6 edges with stabilizers D2, D3, D4, three vertices
with stabilizers D6, Z/2 × D4, Z/2 × S4, and one ideal vertex with stabilizer the
crystallographic group P4m (in our calculations the ideal vertex is being ignored);
in [Pe98] Pearson shows that the lower algebraic K-theory of P4m vanishes.

The complex that gives the homology of ∆3 with local coefficients {Whq(Fσ)}
has the form ⊕

σ2

Whq(Fσ2) →
⊕
σ1

Whq(Fσ1) →
⊕
σ0

Whq(Fσ0),

where σi denotes the cells in dimension i, and Whq(Fσi) occurs in the summand
as many times as the numbers of conjugacy classes of the subgroup Fσi in Γ3. The
homology of this complex gives the data for the E2-term. Let us recall that

Whq(F ) =


Wh(F ), q = 1
K̃0(ZF ), q = 0
Kn(ZF ), q ≤ −1.

So we analyze this complex for each of the following cases: q < −1, q = −1, 0, 1.

q < −1. Carter shows in [C80a] that Kq(ZF ) = 0 when F is a finite group. Hence
the whole complex consists of zero terms and we obtain E2

p,q = 0 for q < −1.

q = −1. Again using Carter’s result in [C80a], K−1(ZF ) = 0, for all the groups
which occur as stabilizers of the 2-cells and the 1-cells, therefore E2

p,−1 = 0 for
p = 1, 2. For p = 0 the complex may have non-zero terms in dimension zero, and
the resulting homology group is

H0(∆3 ; {K−1(ZFσ)}) =
⊕
σ0

K−1(ZFσ0).

Since there is only one conjugacy class for each of the subgroups D6, Z/2 × D4,
Z/2× S4 of Γ3 occurring as stabilizers of the 0-cells, then

H0(∆3; {K−1(ZFσ)}) = K−1(Z[D6])⊕K−1(Z[Z/2×D4])⊕K−1(Z[Z/2× S4]).

To calculate the K-groups: K−1(Z[D6]), K−1(Z[Z/2 ×D4]), and K−1(Z[Z/2 ×
S4]), we use the following formula due to Carter [C80b, Theorem 3].

Let G be a group of order n, let p denote a prime number, let Ẑp denote the
p-adic integers and let Q̂p denote the p-adic numbers. Then the following sequence
is exact:

0 → K0(Z) → (
⊕
p|n

K0(ẐpG))⊕K0(QG) →
⊕
p|n

K0(Q̂pG) → K−1(ZG) → 0.

The group algebra QD6 is isomorphic to Q4 ×M2(Q) ×M2(Q), and the same
statement is true if Q is replaced by Q̂2 and Q̂3. Hence K0(QD6) ∼= K0(Q̂2[D6]) ∼=
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K0(Q̂3[D6]) ∼= Z6. Using techniques described in [CuR81, Section 5], K0(Ẑ2[D6]) ∼=
K0(F2[D6]) ∼= K0(F2[D3]) ∼= K0(F2[Z/2] ×M2(F2)) ∼= K0(F2 × F2) ∼= Z2. Also
K0(Ẑ3[D6]) ∼= K0(F3[D6]) ∼= K0(F3[D2]) ∼= K0(F3 × F3 × F3 × F3) ∼= Z4. Carter
also shows in [C80a] that K−1(ZG) is torsion free for any of the groups above,
so counting ranks in the exact sequence, we have that K−1(Z[D6]) ∼= Z, (see also
[Pe98, pg. 274]).

The computations for Z/2×D4, and Z/2×S4 are nearly identical. The algebra
Q[Z/2×D4] is isomorphic to Q8×M2(Q)×M2(Q) and Q̂2[Z/2×D4] has the same
decomposition, so K0(Q[Z/2 × D4]) ∼= K0(Q̂2[Z/2 × D4]) ∼= Z10. We have that
K0(Ẑ2[Z/2×D4]) ∼= K0(F2[Z/2×D4]) ∼= K0(F2[D4]) ∼= K0(F2[(Z/2)2]) ∼= K0(F2) ∼=
Z. Counting ranks, K−1(Z[Z/2×D4]) ∼= 0. The algebra Q[Z/2×S4] is isomorphic to
Q4×(M2(Q))2×(M3(Q))4 and the same statement is true if Q is replaced by Q̂2 and
Q̂3. We have K0(Q[Z/2×S4]) ∼= K0(Q̂2[Z/2×S4]) ∼= K0(Q̂3[Z/2×S4]) ∼= Z10. The
integral p-adic terms are K0(Ẑ2[Z/2× S4]) ∼= K0(F2[Z/2× S4] ∼= K0(F2[S4]) ∼= Z2,
and K0(Ẑ3[Z/2×S4]) ∼= K0(F3[Z/2×S4]) ∼= K0(F3[(Z/2)4]) ∼= Z8. Counting ranks,
K−1(Z[Z/2× S4]) ∼= Z.

It follows that

E2
0,−1 = H0(∆3 ; {K−1(ZFσ)}) = Z⊕ Z.

q = 0. It is well know that K̃0(ZF ) = 0 when F is one of the groups that occur as
stabilizers of the 2-cells and the 1-cells (see for example [Re76], [Ro94]), so E2

p,0 = 0
for p = 1, 2. For p = 0 the complex may have non-zero terms in dimension zero,
and the resulting homology is

H0(∆3 ; {K̃0(ZFσ)}) = K̃0(Z[D6])⊕ K̃0(Z[Z/2×D4])⊕ K̃0(Z[Z/2× S4]).

In [Re76] Reiner shows that K̃0(Z[D6]) = 0, then

E2
0,0 = K̃0(Z[Z/2×D4])⊕ K̃0(Z[Z/2× S4]).

To compute the K-groups: K̃0(Z[Z/2 × G]) for G = D4 or S4, consider the
following Cartesian square

Z[Z/2][G]

��

// Z[G]

��
Z[G] // F2[G]

which yields the Mayer-Vietories sequence (see [40, Theorem 49.27])

K1(ZG)⊕K1(ZG)
ϕ−→ K1(F2[G]) →

→ K̃0(Z[Z/2][G]) → K̃0(ZG)⊕ K̃0(ZG) → 0
(1)

In [Re76] Reiner shows that K̃0(ZG) is trivial for G = D4 and S4 and the K-
groups K1(ZG) can be computed as follows: For any group G, it is well known that
the rank of K1(ZG) is equal to the rank of Wh(G) (see, for example [O89]) where
the rank of Wh(G) is the number of irreducible real representations of G minus
the irreducible rational representations of G (see case q = 1 below), and that the
torsion part of K1(ZG) is {±1} ⊕ Gab ⊕ SK1(ZG) (see [O89, Theorem 7.4]). For
G = D4 or S4, Oliver in [O89] shows that both Wh(G) and SK1(ZG) are zero.
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Since (D4)ab = Z/2 ⊕ Z/2, and (S4)ab = Z/2, then it follows that K1(Z[D4]) =
(Z/2)3, and K1(Z[S4]) = (Z/2)2. We thank B. Magurn who kindly inform us that
K1(F2[D4]) = Z/4 ⊕ (Z/2)2 (see [Ke80, Lemma 4.2]), and K1(F2[S4]) = Z/4 ⊕
Z/2 (see [Ma04]). Therefore the exact sequence in (1) yields the following exact
sequences

(2) (Z/2)3 ⊕ (Z/2)3 → Z/4⊕ (Z/2)2 → K̃0(Z[Z/2][D4]) → 0.

(3) (Z/2)2 ⊕ (Z/2)2 → Z/4⊕ Z/2 → K̃0(Z[Z/2][S4]) → 0

Next, we study the image of ϕ : K1(ZG) ⊕ K1(ZG) → K1(F2[G]). Let us
consider first the case G = D4 for which im(ϕ) = Z/2 ⊕ Z/2. This can be seen as
follows: First im(ϕ) = im(ψ) where ψ : K1(Z[D4]) −→ K1(F2[D4]) is induced by
the canonical ring homomorphism Z → F2. Note the K1(Z) is a direct summand of
K1(Z[D4]) and isomorphic to Z/2 ; but this summand goes to zero in K1(F2[D4])
since it factors through the following commutative square

Z/2 = K1(Z)

��

// K1(F2) = 0

��
K1(Z[D4]) // K1(F2[D4])

Since K1(Z[D4]) = (Z/2)3, then dimF2(im(ψ)) ≤ 2. But from the exact sequence
given in (2), dimF2(im(ψ)) ≥ 2, thus im(ϕ) ∼= Z/2 ⊕ Z/2 and it follows that
coker(ϕ) ∼= Z/4.

Next, for G = S4 a nearly identical argument shows that the image of the map
ϕ : K1(Z[S4])⊕K1(Z[S4]) → K1(F2[S4]) is isomorphic to Z/2 and coker(ϕ) ∼= Z/4.

Hence after working through the exact sequences given in (2) and (3), we have
that K̃0(Z[Z/2][D4]) = K̃0(Z[Z/2][S4]) = Z/4.

It follows that

E2
0,0 = H0(∆3 ; {K̃0(ZFσ)}) = Z/4⊕ Z/4.

q = 1. Oliver in [O89] has shown that Wh(F ) = 0 when F is one of the groups
that occur as stabilizers of the 2-cells and the 1-cells. So it follows that E2

p,1 = 0 for
p = 1, 2. As before for p = 0, the complex may have non-zero terms. The resulting
homology groups are

E2
0,1 = H0(∆3 ; {Wh(Fσ)}) = Wh(D6)⊕Wh(Z/2×D4)⊕Wh(Z/2× S4).

To calculate: Wh(D6), Wh(Z/2 × D4), and Wh(Z/2 × S4), we use the following
formula given in [Bas68]: Wh(F ) = Zy ⊕ SK1(ZG), where y is the number of
irreducible real representations of G minus the number of irreducible rational rep-
resentations of G. When G = D6, Z/2 ×D4 or Z/2 × S4, y is zero, and Oliver in
[O89] proves that SK1 vanishes for all finite dihedral groups. Oliver also shows in
[O89, Example 9.9] that if |G|=16, then

SK1(ZG) =

{
1 if Gab ∼= (C2)2 or (C2)3

Z/2 if Gab ∼= C4 × C2.

In particular for G = Z/2×D4, Gab ∼= (C2)3, and we have SK1(Z[Z/2×D4]) = 1.
For the remaining case of SK1(Z[Z/2 × S4]), we use the following formula due

to Oliver [O89, Theorem 3.9].
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Let G be a finite group of order n. For each prime p, let ẐpG and Q̂pG denote
the p-adic completions of ZG and QG, and set SK1(ẐpG) = ker{K1(ẐpG) →
K1(Q̂pG)}. Then set

CL1(ZG) = ker{SK1(ẐG) l−→
⊕

p

SK1(ẐpG)}.

The sum
⊕

p SK1(ẐpG) is, in fact, a finite sum, SK1(ẐpG) = 1 whenever p - |G|,
and the localization homomorphism l is onto. In particular SK1(ZG) sits in an
extension

1 → CL1(ZG) → SK1(ZG) →
⊕
p|n

SK1(ẐpG) → 1.

Wall in [W74, Theorem 2.5] shows that SK1(ẐpG) is a p-group for any prime
p and any finite group G, and SK1(ẐpG) = 1 if the p-Sylow subgroup of G is
abelian. Also Oliver in [O89, Proposition 12.7] shows that SK1(ẐpG) = 1 if the
p-Sylow subgroup of G has a normal abelian subgroup with cyclic quotient. In
particular for G = Z/2 × S4, the 3-Sylow subgroup of G is of type C3, and the
2-Sylow subgroup of G is of type C2 × D4. Then it follows that both SK1(Ẑ3G)
and SK1(Ẑ2G) vanish, and we conclude SK1(ZG) ∼= CL1(ZG). Since the group
algebra R[Z/2 × S4] splits as R4 × (M2(R))2 × (M3(R))4, then by [O89, Theorem
5.4] CL1(ZG) = 1, it follows that SK1(ZG) vanishes. Hence the whole complex
consists of zero terms, and E2

p,q = 0 for q = 1.
Thus the spectral sequence collapses at E2, completing our computations of the

algebraic K-groups Kn(ZΓ3) for n < 2. �
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